Progress and Plans for FRC Studies in MRX-FRC

Presented by Stefan Gerhardt, representing the MRX-FRC team.

Outline

- Introduction to MRX
- Three Stages of MRX-FRC
 - Merging and Conducting Shell Stabilization
 - Current Amplification and Sustainment with Transformers
 - Stabilization and Sustainment with NBI
- Diagnostics and Summary

MRX is an Established Facility for Reconnection Studies

- Two Co-axial Flux Cores Form a reconnecting Current Sheet
- Focus Till Now on Local Physics of Reconnection
 - Verified a generalized Sweet-Parker
 Model of reconnection
 - Measured the LHDI in at the current sheet edge.
 - Measured Magnetic Fluctuations near the LH frequency which correlate with fast reconnection.
 - Beginning Studies of Global Reconnection and Spheromak Merging

Much of 2004 has been Occupied with Facility Upgrade

 Relocated the PF and TF power supplies, increased stored energy (250kJ), decreased stray inductance.

Extended vacuum vessel to allow greater flux-core separation

Stage 1: FRC Formation and Conducting Shell Stabilization

- (a) Plasma Formation
- (b) Spheromak Pinch-Off
- (c) Spheromak Merging
- (d) Final FRC State

Experimental Flexibility Provided by Adjustable Conducting Structures

- First test of Conducting Shell Stabilization for FRCs
- Movable without breaking vacuum
- Shell location and EF used to change elongation.

Extensive Internal Magnetic Diagnostics

- Excellent 2D magnetics available from the first shot.
- Developing systems for toroidal mode number evaluation.

Advanced Optical Measurements Exist

- T_i and V_i from Doppler spectroscopy
- Spatial resolution: 4cm x
 4cm
- ~10 μs resolution
- 1m spectrometer with 512x512 CCD for dispersing and measuring light
 - ...additionally...
- Fast framing camera used to observing plasma shape and motion.

 Also Use Line-Integrated Collection Optics for nonperturbative measurements

Preliminary Shell Structure Design Compatible With Diagnostics Stainless

Shaft

Differential

Pumping

Segmented Copper shell structure allows flexibility

• Thickness >3mm provides sufficient skin time.

Holes in shell as necessary to accommodate diagnostics

Replaceable Shells on Movable Supports.

Stage 2: Amplification and Sustainment using Current Transformers

Used to Make an Attractive NBI Target Plasma

Next Step in Design Includes Addition of Current Transformers

- Total flux of 51mWb, allowing V_{loop}=50V for 1msec
- Ends of solenoids can touch or be separated
- Can ramp up flux in the spheromak or the FRC
- Allows preservation of simply-connected geometry.
- Decoupling Transformer between Ohmic/PF and Ohmic/SF

Preliminary Design of Transformer has been Finished

Transformers Have Driven Current in FRCs and Spheromaks

Stage 3: FRC Stability Studies with NBI

Compact Neutral Beam Makes NBI Possible

Beam Energy	20-25keV	
Energy stability	<5%	
Beam Power	Up to 1.5MW for H	
Beam Size	4.5" D	
Beam Composition	<10% of Molecular lons	
Current stability	<10%	
Pulse duration	>1ms	
Repetition	1 pulse every 2 minutes	
Distance from plasma center	1.8 m	

Similar Beams Developed for the Gas Dynamic Trap and Madison Symmetric Torus

Systems for GDT Tested to **Full Power**

P.P. Deichuli, el, al, RSI 75, 1816

Ion Optics Lead to Tight Focusing

from IOS

Protons Dominate the **Extracted Ion Current**

Desired Target Plasmas For NBI

Parameter	Value
Plasma Current (kA)	180
B _{max} (kG)	1.5
Density (cm ⁻³)	1x10 ¹⁴
T _e (eV)	50
T _i (eV)	600
R _p (cm)	30
R _{sep} (cm)	40
S*	18
Trapped Flux (mWb)	22

Target Plasmas Have Sufficient Confinement of NBI

R_{tang}=34 cm & E_{beam}=25 keV

Radius of the Conducting Shell

Typical Orbits for B=1kG

Extensive Measurements Are Planned For These Experiments

Need	Tool	Status
Internal Magnetics	~200 Channels of Internal Magnetics, 1D & 2D arrays	In Use
Ion Temperature and Plasma Flows	CCD/Spectrometer with Optical Probe for local Measurements	In Use
Electron Density and Temperature	Triple Probe	In Use
Plasma Motion	Fast Framing Camera	Used when Available
Plasma Current and Flux	Rogowski Coils and Loops	Waiting for Installation
Plasma Density	Single Chord Interferometer	In Design
Instabilities	Toroidal Pick-Up Coils Arrays	In Design
Neutral Density	H-alpha Detector Systems	In Design
Fast Ion Confinement	Neutral Particle Analyzer	Scoping Studies
Instabilities	SXR arrays	Scoping Studies
Electron Temperature	Thomson Scattering	Scoping Studies

Summary

- Preliminary design for MRX-FRC is complete, based on existing MRX facility.
- Staged approach has been developed:
 - Spheromak merging a conducting shell stabilization
 - Current amplification and sustainment (~20mWb)
 - High power NBI for sustainment and stability studies
- Program awaits DOE approval and funding.

Proposed Schedule for MRX-FRC

- SF power supply is to be commissioned by Dec.
- Upgrade of EF rectifier upgrade (5000A yielding ~.5kG on axis) to be completed by Dec.
- Shaping coils are under construction.
- Conducting shell structures are under design.
- Construction of CTs and Ohmic power supply to begin in 1st year after approval
- NBI scoping in second year and installation during third...Two options for system
 - Purchase new from Russia.
 - Temporary test with system from Madison Symmetric Torus

The End

Initial Formation Scheme will Allow Merging and Current Sheet Experiments

- Single set of shaping coils causes X-point configuration.
- Strong EF pushed the spheromaks in as they pull together.
- Compatible with current sheet experiments

Future Scheme Adds Extra Shaping Coils for Flexibility and Additional EF

FRC Formed By Counter-Helicity Spheromak Merging

- (a) Plasma Formation
- (b) Spheromak Pinch-Off
- (c) Spheromak Merging
- (d) Final FRC State

Current Focus of Experiment Has Been Reconnection and Current Sheets

- Establishment of a generalized Sweet-Parker Model
- Establishment of anamalously large resistivity in the low collisionality regime.
- Measurement of Magnetic fluctuations correlated with enhanced resistivity

